Atriva Atriva
Documentation

Atriva Edge AI Platform

Guides, tutorials, and API references to help you build and deploy Edge AI applications.

Quickstart Guide

This quickstart focuses only on the core repo: https://github.com/atriva-ai/ai-inference-ov

It walks beginners through:

  1. Running inference locally with Python venv using built‑in models
  2. Running inference inside Docker using built‑in models
  3. Running inference with your own custom OpenVINO-ready models

It also references the test apps inside the /tests directory, since we do not yet have full example applications.


1. Local Testing (Python venv)

Prerequisites

  • Python 3.10+
  • OpenVINO installed (or let the repo install dependencies)
  • Git
  • macOS / Linux / Windows

Steps

git clone https://github.com/atriva-ai/ai-inference-ov.git
cd ai-inference-ov
python3 -m venv venv
source venv/bin/activate   # Windows: venv\Scripts\activate
pip install -r requirements.txt

Run the built-in test app

Inside the repo:

/tests/
    test_yolov8_openvino.py
    test_vehicle_trackign.py
    test_api.py

Example:

python tests/test_yolov8_openvino.py

This will automatically load one of the built-in OpenVINO IR models under /models.

You should see console output showing:

  • Model loaded successfully
  • Inference time
  • Final prediction

2. Testing Via Docker

If you prefer containerized inference:

docker build -t atriva-ai-inference .
docker run --rm atriva-ai-inference

The Docker container will:

  • Install OpenVINO
  • Copy the repo
  • Run the same test scripts located in /tests

To run a specific test:

docker run --rm atriva-ai-inference python tests/test_detection.py

3. Use Your Own Models

OpenVINO requires IR format:

  • model.xml
  • model.bin

Place your model:

/models/custom/<your_model_folder>/model.xml
/models/custom/<your_model_folder>/model.bin

Update your test script

Modify one of the test scripts to:

MODEL_PATH = "models/custom/your_model/model.xml"

Run:

python tests/test_image_classification.py